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In a specific continuum limit at intermediate energy, the Fermi-Pasta-Ulam (FPU)-3 chain
can be described by a nonlinear partial differential equation, whose solutions are shock waves.
Proper long-wavelength initial conditions of the discrete model show a time evolution in numerical
simulations that agrees with the solution of the continuum model where it is single valued. The
breakdown times for the occurrence of the shock, when starting from a smooth initial condition,
are shown to be relevant time scales for the transition to equipartition of energy, by an analysis of
the time evolution of the spectral entropy. A simple time scale tg ~ N?/(BkE) is derived in the
continuum limit for mode k initial excitations with energy E and N particles. This time scale is

tested numerically in the FPU chain.

PACS number(s): 05.45.+b, 63.20.Ry, 63.10.+a

I. INTRODUCTION

The FPU (8 model [1], given by the Hamiltonian

N 2 2 4
Pa | (Gn+1 —gn) (gn+1 — gn)

=y (o ety gl ) W
with periodic boundary conditions ¢ = gn+1, P1 =
PN+1, is a paradigm for a nonintegrable Hamiltonian
system with many degrees of freedom and has a sim-
ple integrable limit (harmonic chain). In this limit, the
solutions are Fourier modes with wave numbers 27wk /N
and frequencies wy = 2sin(wk/N), where N is the num-
ber of particles in the chain and |k| = 1,...,N/2. One
issue of many studies is the equipartition of energy when
leaving the harmonic limit, i.e., the redistribution of
energy among the different modes. The spectral en-
tropy [2] proved to be a useful probe for the obser-
vation of equipartition. When defining “probabilities”
Pr(t) = Bu(t)/ S, B, where Bi(t) = (P? + wiQ)/2
is the actual energy of the kth Fourier mode [deter-
mined from the amplitudes {Qx(t)} and {Px(t)} of the
Fourier transform of {g,(t)} and {p,(t)}], the spectral
entropy reads S(t) = — ), pr Inps, following Shannon.
In the case where only a single Fourier mode is excited,
S assumes the value 0, whereas in an equilibrium situ-
ation (i.e., equipartition) S = Spax = In(N/2). When
varying the number of degrees of freedom N or the
type of initial condition the normalized order parameter
1(t) = [S(t) — Smax]/[S(0) — Smax] is more useful [2].

There exist various regimes in energy, characterized
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by different relaxation times to equipartition; they have
been recently described in Refs. [3,4]. Below a critical
energy (E. =~ 3 for # = 0.1), no significant diffusion to
high modes from the initially excited low modes is ob-
served [5]. This is the region where perturbation theory
estimates in the manner of Nekhoroshev have been re-
cently attempted (they are reviewed in Ref. [6]). This
is also the region of FPU recurrences of individual mode
energies [7], which have also been explained in terms of
a continuum model for the cubic FPU « model [8,9], the
Korteweg—deVries equation. The quasiperiodic behavior
is believed to be the consequence of the presence of “soli-
tons,” which travel on the lattice and almost reproduce
the initial condition at given instants of time. Above E,
the system relaxes to equipartition on times which grow
with N [5,10] and recurrent behaviors disappear, render-
ing meaningless the soliton interpretation. At even larger
energies E ~ N mode resonance overlap [11] causes a fast
relaxation to equipartition, detected also in some other
early numerical experiments [12]; this also reflects in a
change in the scaling law of the maximal Lyapunov ex-
ponent vs energy density [13], which has been recently
analytically computed using differential geometry tech-
niques [14].

In this paper we concentrate on the energy region
E. < E < O(N), where the FPU chain evolves towards
equipartition on a long time scale. We study the propa-
gation of traveling waves with wavelength of the order of
the system size (IN), focusing on the mechanism by which
the nonintegrability of the system causes the destruction
of such structures. This will give us information about
the times for relaxation to equipartition, measured using
the parameter 7, for energies larger than the equiparti-
tion threshold. As we are treating one-mode excitations
we have

ny=1- >0 @)
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In Sec. II we present the derivation of the PDE cor-
responding to the continuum limit of model (1) for suffi-
ciently large energy. The PDE, which develops shocks, is
then solved in Sec. III and the relevant dependences of
the breakdown time are given, e.g., that on the number
of oscillators N and on the strength of the nonlinear-
ity. Section IV is devoted to the comparison between
the continuum model and the numerical solution of the
FPU lattice. At the breakdown time energy transfer
to short wavelengths is enhanced through a dynamical
mechanism which creates short scale oscillations where
the slope of the solution is larger; then the breakdown
time is assumed as a typical time scale for the initial
evolution towards equipartition and the spectral entropy
time dependence is rescaled accordingly. Numerical ex-
periments show a good agreement with this theory. In
Sec. V we draw some conclusions and compare our results
with those obtained with different initial and boundary
conditions.

II. THE CONTINUUM LIMIT

For sufficiently smooth initial conditions, the time evo-
lution of system (1) can be understood in terms of an
appropriate continuum limit. We must, however, observe
that the limiting process from a discrete system to a con-
tinuous one, as the inverse process of discretization, is not
uniquely defined and can introduce some new qualitative
properties, depending on the employed procedure. Nev-
ertheless, one can at least hope to sketch some analogies,
whose validity can be checked by numerical experiments.

The equations of motion for the FPU 3 system are

Gn = @n+1 — 2qn + gn-1 + B(@n+1 — qn)?
—B(gn — @n—1)* . (3)

We consider an initial configuration which is character-
ized by a slow variation of the coordinate g, of the nth
particle with respect to the lattice site n, such as a single
linear mode with a small k:

27kn
gn(0) = Acos ( N

) , n=1,....N; k<N .

(4)

In the continuum approach we consider the set of coor-
dinates {g,(¢)} as a sampling, at fixed integer positions,
of a field g(z,t) defined on a continuous spatial domain:

gn(t) = gq(z =mn,t) . (5)

The field g(z,t) must obey the boundary conditions
which correspond to those of the lattice: for periodic
boundary conditions we can consider the whole real line
as the spatial domain of ¢(z,t), imposing the periodicity
condition ¢(z + N,t) = ¢(z,t). We suppose that ¢(z,0)
is slowly varying over spatial distances of the order of
Az =~ 1 (the lattice spacing), i.e., the waveform varies
significantly only over a characteristic distance of size N;
this condition will remain true at least for some initial
short time interval. During this time interval the evolu-
tion of the field can thus be described by substituting a

suitably truncated Taylor expansion to the finite differ-
ences on the right-hand side of (3).

Let us first consider the linear term to clarify in which
parameter the expansion has to be made. By the substi-
tution

[qn+1(t) - 2qn (t) + qn—l(t)]

— [g(z + 1,t) — 2¢(z,t) + q(z — 1,¢)] ,

we observe that using the shift operator exp[Az 8/9«z]
with increment Az = 1 we can write

la(z + 1,t) — 2¢(x,t) + g(z — 1,1)]

=2 [cosh (%) - l] q(z,t)

o? 1 0*

= 529(@t) + 1—2%1;11(@%) toeee (6)
If q(z,0) = Acos(2mkx/N) then the order of magnitude
of the different terms in this expansion is determined by
|0q/0x| =~ |kA/N| =~ |A/N| (for k < N). Therefore, the
expansion in increasing order of derivatives is an expan-
sion in powers of k/N = O(1/N). In other words the
small parameter whose powers enter in the expansion is
the wave number, which in our units is 2wk/N. Thus,
expansion (6) is equivalent to an expansion of the dis-
persion law near the nondispersive limit k¥ — 0, which
is in fact valid for long waves. The development on the
right-hand side of (6) takes into account the discreteness
of the medium, which causes dispersion. Retaining only
the first term would lead, in the linear case, to the usual
vibrating string equation. Let us now define

z= N (7)
=5 ®)
i@ =120 ©)

The normalizations (7) and (9) make the order of the
terms explicit; ¢ and its spatial derivatives 87§/0%7 are
of the order 1, and the order of magnitude is explicitly
given by the coeflicients. We also observe that in these
variables the basic periodicity interval for §(%,%) is al-
ways & € [0, 1], irrespective of N, so for a given k the
continuum approximation is increasingly more accurate
as we increase IN. Finally, transformation (8) normalizes
the time scale to the period of the slowest linear mode
which is of order N. Equation (6) yields

g(z + 1,t) — 2q(z,t) + g(z — 1,¢)

2= 4=
=A[1 oq, 1 8q+0(i)],

N2932 ' 12N4 9zt

while for the nonlinear term we obtain
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Bl(gn+1 — qn)3 —(gn — qn—l)s]

3 [(0§\? 0% 1
‘N—(a—m> w*o(ﬁ)

Introducing the parameters

— BA3

1
d= 'N‘a €= ﬁAz,
related to dispersion and to nonlinearity respectively, we
finally obtain the evolution equation for §(z,t):

8§ 8% 6% 9% . (0G\° 8%
o~ o5 T1aoet T (5;) o52
+0(8*) + 0(e8®) . (10)

As long as the spatial derivatives of § remain O(1) the or-
der of magnitude of the terms is explicitly given by € and
6. We are interested in studying the evolution starting
from an initial condition which, in the linear case (3 = 0),
would give rise to a traveling wave running in one direc-
tion. In such a case one can expect the solution, at least
initially, to be slowly changing in time when observed in
a translating reference frame with the linear wave veloc-
ity, which is = 1 for the low modes. Therefore, choosing
for example a right-going wave, we define

q(,t) = ¢(¢,7) (11)
with

{$2%! (12)

T =

S 8

where the variable 7 governs the variation on a slower
time scale, corresponding to sizeable modifications of the
shape of the traveling wave. Inserting (11) and (12) in
Eq. (10) and neglecting terms of order higher than §2, we
obtain the following evolution equation for the function

w = 8¢ /0¢:

1
wy = —iewz'we - 52111555 R (13)

where partial derivatives are now denoted by the sub-
script for convenience in later calculations. Let us ob-
serve that the evolution equation (13) is of lower order in
time because one of the two possible propagation direc-
tions has been selected. Equation (13) is the well known
modified Korteweg—deVries equation, an integrable non-
linear field equation solvable by the inverse scattering
method (see [15] and references therein). The study of
the solutions of this equation allows one to explain quali-
tatively the recurrences observed numerically in the FPU
model at small energy. Let us remember that, for the
so-called FPU a model with cubic nonlinearity in the
Hamiltonian, one gets instead the (integrable) Korteweg—
deVries equation following an analogous procedure [8].
Equation (13) does not contain any dependence in §, and
therefore it is invariant with respect to changes of N; in

particular it remains valid in the infinite size N — oo
limit.

III. SOLUTION OF THE CONTINUUM MODEL

We now consider the case where the nonlinear term
prevails over the dispersive one in Eq. (13) yielding

3
Wy —Eewzwf , (14)

which, rewritten in the variable u(x,t) = 9q(z,t)/0x,
gives

3
us + Uy + iﬁuzum =0. (15)

Equation (15) can be solved exactly (in implicit form)
by the method of characteristics. To sketch the method
we consider the slightly more general case of a nonlinear
hyperbolic first order PDE of the quasilinear kind

us + F(u)ug, = 0. (16)

Equations of this form arise in many physical prob-
lems [16]. We will now treat briefly Eq. (16) from a
general point of view, independently of its connection
with the discrete lattice problem, giving a short review
of known methods and results.

It can be easily shown that all solutions of (16) have
a constant value over a particular family of straight lines
in the (x,t) plane, called characteristic curves. Each of
these lines has a slope

dz
—=F 17
@ P, (a7)
where u is the constant value that u(z,t) itself takes on
the line. The solution of (16) is based on the construction
of the family of lines after requiring, in our case, a specific
initial condition (a boundary condition is also required if
one restricts to a bounded domain). We are interested in
the initial value problem

u(z,0) =ug(z), —oco<z<o00. (18)
Then u takes the constant value uo({) on the straight
line

& = (+ F(uo(Q)t (19)

for each value of the parameter (.
Therefore the solution of the initial value problem (16)
and (18) is given in implicit form by

{*

where u(z,t) is obtained solving for {(z,t) in the sec-
ond equation. The solution (20) means that each differ-
ent value of u propagates with its own speed F'(u); the
waveform changes necessarily in time, being affected by

uo(()
¢+ F(us(O)t (20)
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distortion due to nonlinearity (this distortion vanishes in
the linear case).

The most striking phenomenon is the birth of discon-
tinuous solutions, even from smooth initial data. In fact,
since the characteristics are not parallel to each other,
for ¢ > 0 some of them can intersect. But characteristics
with different slopes carry different values of the solution,
so an intersection implies a multiple definition of the u
value at that point in the (z,t) plane. The onset of this
is called a shock. In general, there is a region in the (z, )
plane, bounded by an envelope which depends on the ini-
tial waveform, where the characteristics intersect and the
solution constructed by propagation over the character-
istics is multivalued. This envelope is also, for t > 0,
the boundary of the region on the (z,t) plane where the
solution of (16) exists and is single valued. The instant
t = tp [see Fig. 1(b)] where the shock arises is the mini-
mum value of ¢ for the points of the envelope in the (z,t)
plane. To construct the waveform at time ¢ one has to
translate to the right every value ug of the initial profile

1.0

W
TIT

MU o
0 i =0 900 400 500

X

FIG. 1. (a) Solution of Eq. (15) in the moving frame, for the
initial condition uo(¢) = sin(27k(/N) with k = 2, N = 512,
and 8 = 0.1. The curves are traced stroboscopically from
t = 0 to t = 3tp, with a time interval of tg/2 [t being
given in (24)]. (b) Diagram of characteristics in the (z,t)
plane. The envelope of characteristics has cusps at t = ¢p,
the breakdown time (indicated by the arrow); for 0 <t < tp
the solution is single valued.

by a distance F'(uo)t. Each part of the wave where the
propagation speed is decreasing with increasing z ulti-
mately “breaks” into a multivalued waveform, because
points of the waveform with a smaller = value tend to
overtake those with a bigger = value.

We refer now again to (15), which is of the kind (16)
with F(u) = 1 + 38u?/2, so the propagation velocity is
larger the larger |ug| is. The parts of the wave where
the nonlinear distortion during propagation causes an
increase in slope, leading to shock formation, are those
where |ug(()| decreases with increasing ¢. In our case the
discontinuity always arises because we consider periodic
boundary conditions, which implies that it always exists
an interval over which |ug({)| is decreasing (apart from
the trivial case u = 0). An example of a solution of (15),
shown in the moving frame, is reported in Fig. 1(a), to-
gether with the related characteristics [Fig. 1(b)].

The breakdown time tg can be calculated analytically
from the solution (20) to be

-1
te = max F' (uo(€))ug , (21
7 Lc: FrastSuno<o T 0(0) "(C)l] (21)

giving for (15)

-1
tB:[{mg‘éS’fd«o} |3ﬁuo(<)ua(<)¢] )

When ¢(z,0) = Acos(2rkz/N), then
uo(¢) = —(2wk/N)Asin(27k(/N) , (23)

and one obtains

N3
tB= ——
BT 12n%k3542 (24)
while the number of space intervals of the waveform
where the discontinuity develops is 2k in the interval of
length N.

IV. SHOCK WAVES ON THE LATTICE

We have so far discussed the properties of the solutions
of Eq. (15). Now we come back to the original problem,
the nonlinear chain described by (3), to apply the results
of the continuum model, after a suitable interpretation.

The numerical integration of (3) shows that, for appro-
priate initial conditions which will be specified later, the
temporal evolution of the discrete spatial derivative

Tn = gn+1 — qn (25)

of the lattice configuration g, (t) is well described by the
solution u(z,t) of (15), nearly up to the instant t = tp
at which the latter becomes multivalued (see Fig. 2).
Before entering a detailed analysis let us clarify some
aspects of the relation between the discrete lattice de-
scribed by the equations of motion (3) and the continuum
model described by the wave equation (15), reexamining
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FIG. 2. Comparison of the solution of Eq. (15) (full line)
and the solution of the lattice equation (3) (¢) with the initial
condition (27) for ¢t < tg. The solution of Eq. (15) is drawn
in the moving frame, each time the lattice solution completes
a round trip. N = 256, k = 1, R = 4.67 x 1073 [R is defined
in Eq. (28)], ts = 1091.

the various hypotheses and approximations which led to
the latter. In particular we must specify what kind of ini-
tial conditions allows the comparison of r,(t) with u(z, t).
Since the continuum representation is suggested by the
hypothesis of a “long wavelength” initial condition, we
study the case of an initial excitation restricted to the
low modes [i.e., (4)]. The initial conditions to be im-
posed on (15) involve only u(z,0) = d¢(z,0)/dz. Since
Egs. (3) are of second order, initial velocities remain to
be specified. The reduction of (10) to (13) rests on the
selection of one of the two possible directions of wave
propagation. Then the appropriate initial distribution
of velocities on the lattice completing (4) must give rise
to a traveling wave. In the linear case the right-going
traveling wave corresponding to mode k is (apart from a
constant phase)

qn(t)zAcos(%cz—wkt) , n=1,...,N, (26)

which originates from the initial conditions

g.(0) = Acos (%m)
n=1,...,N, (27)

4n(0) = wiAsin (%)

with w; = 2sin(wk/N). It is reasonable to expect
that (27) gives rise to a traveling wave, although for 3 # 0
its time evolution is not given by (26).

To derive (14), or the equivalent (15), from (13), we
have neglected the dispersive term containing wegee. It is
clear that such a term becomes important where a dis-
continuity is developing, i.e., when t — tp and the spa-
tial derivatives increase. Nevertheless, let us point out
that (13) is already a truncation of (10). Although the
term wege is certainly the most important among the dis-
persive terms originated from the expansion (6), its rel-
ative importance to nonlinear terms, denoted as O(ed®)

in (10), depends also on €, which is not necessarily small.
Here we study in fact the regime of sufficiently high en-
ergy, in which an initially smooth waveform evolves into
a spatially stochastic field. In this case the temporal
evolution is not described by the modified Korteweg—
deVries equation (13), but by an equation which takes
into account nonlinear terms of higher order, which are
larger than the dispersion term and destroy integrability.
Thus we made the simplest choice of neglecting disper-
sion while keeping the dominant nonlinear term. More-
over, for t > tp, the “smooth wave” hypothesis, on which
the continuum approximation is based, is no longer valid.

The energy range of interest is that where a significant
energy sharing between the Fourier modes is present. In
Ref. [5] it has been found that this happens if E > E,
(E is the total energy), with E. ~ 3 for 8 = 0.1, looking
at the time evolution of the order parameter n (2), which
shows a relaxation towards equipartition. This result is
confirmed in Ref. [10], where a theoretical explanation is
also given in terms of a diffusion mechanism from low to
high modes.

In what follows we report the results of several nu-
merical experiments concerning the integration of the
FPU equations of motion (3) starting from initial data
of the kind (27) with & <« N and with energy density
E/N in the range 0.1-5.8 and 128 < N < 1024. For
lower values of E/N the system shows recurrent behav-
ior and extremely slow relaxation, while for higher val-
ues the breakdown time becomes too short to allow an
analysis of the transient behavior. The integration algo-
rithm is the symplectic “leap-frog,” with a temporal step
At = 0.05, which gives an error in energy conservation
less than 0.1%. B8 was fixed at 8 = 0.1.

Particularly suitable for this analysis is the use of
a “pseudo-Reynolds” number R as a control parame-
ter [17]. R measures the relative weight of the nonlin-
earity,

E nl

R = ,
Elin

(28)

where Ey is the nonlinear energy of the system (anhar-
monic potential energy term) at ¢ = 0 while Eyj, is the
linear energy (kinetic plus the harmonic potential).

The breakdown time dependence on the wave ampli-
tude A, expressed by (24), can be read as a dependence
on the degree of nonlinearity of the system. The lat-
ter grows with A: in the case of one-mode excitations
R x BA%k%/N?, roughly. Indeed, for the initial condi-
tions (27) one can exactly evaluate the quantities in (28)
at t = 0, obtaining

2n2k2A2
Biin(0) = %wZNAZ wel A (29)
3 kN 3TiBktA*
3 k<N 3m2Bk2A%

so that
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R
In the explored energy range, the evolution of the non-
linear chain (3), starting from initial conditions of the
kind (27), is well described by the continuum model (15)
over a time slightly shorter than tp (see Fig. 2). The
comparison is made between 7, (t) = gn+1(t) — ¢ (t) and
u(z,t) = 9q(x,t)/0c evaluated at lattice points z = n.
This agreement has been verified for different values of
N (from N = 64 to N = 512), varying the energy density
in the previously given range and for a few values of k
(with £ < N).

As we can see in Fig. 3, the agreement is excellent up to
almost ¢t = tg. Near this time the r,, waveform develops
short-wavelength oscillations in the shock zone for the
wave on the continuum. (For the sake of brevity we will
refer to such a zone as the “shock zone” also when we
speak about the discrete lattice.)

In order to obtain a quantitative indication how well
rn(t) represents u(z,t), we study the time evolution of
the difference between them. In Fig. 4 we show the rela-
tive error

Dy, (t) = e mz.x.).(N} |Pn(t) —u(n,t)]/ max

{1 ne{l,..,N} (01

(33)

as a function of time.

This quantity remains less than a few percent most of
the time, then it suddenly increases for times near t = tp;
this is mainly due to the shock zone, while the major
part of the wave on the lattice remains well approximated
by the continuum model (see Figs. 2 and 3). Moreover,
we observe that the graph of the multivalued “solution”
u(z,t) for t > tp continues to approximate the shape of
r, away from the shock zone, where r, remains smooth
for a time of the order of some tg’s.

A
|t2 :I% T t1[ T ]
1.0 . -
= _'
£ 05 ]
::‘0.0 -]
> - ]
5 -05 | 4
. ]
~1.0 § . R -

R I S IAANAT

0 100 200 300 400 500

X , N

FIG. 3. Comparison between the solution of Eq. (15) (full
line) and the solution of the lattice equations of motion (3)
(¢). N=512, k=1, R =28 x 1072, tg = 364. We observe
the time evolution in the laboratory frame, where the wave
travels to the right. The times t; = tp, t2 = 1.6tp, and
t3 = 2tp are shown successively.
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FIG. 4. Relative error of Eq. (33) vs time for N = 512,
k=1, R=5.6x10"3 tp = 1819.

Let us resume our findings. The evolution of the FPU
chain can be predicted by the model (15) over times
which are relatively small but sufficient for the wave to
complete some round trips on the lattice before break-
ing up. The initially regular waveform, which would re-
main such if the lattice were linear, becomes more and
more irregular as time goes on until it forms a cloud of
points without any clear structure. This is shown (at
a much larger value of R to reduce integration times)
in Fig. 5, where one can observe the destruction of the
wave structure starting from the shock zone where ir-
regular fluctuations are created; the latter then spread,
invading the whole chain. In the final state many linear
Fourier modes are excited. Thus, for the traveling wave
initial conditions considered here, the mechanism causing
the redistribution of energy between the modes is a sort
of “shock” produced by the nonlinearity of the lattice.
Obviously the true shock, described by (15), is a differ-

onNs
)

2
| 1 1 1 1 4 1 y 1 1
0 100 200 300 400 500 0 100 200 300 400 500
n a) n b)

0 100 200 300 400 500
n c)

100 200 300 400 500
n e) n 1)

0 100 200 300 400 500 0

FIG. 5. Time evolution of the discrete spatial derivative r,
in Eq. (25) vs lattice site n for longer times: (a) t = 90, (b)
t = 210, (c) t = 330, (d) t = 450, (e) t = 570, (f) t = 600.
The final waveform displays no regularities. N =512, k =1,
R =0.18, t5 = 56.
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ent phenomenon, which nevertheless represents a useful
analogy to refer to, and from which quantitative infor-
mations can be derived. [To avoid misunderstandings,
we emphasize that the solution of (15) exists only until
t = tp, while the solution of (3) is defined over all times.
This is guaranteed by the fact that Newton equations
for potentials bounded from below define a flow over all
times [18].]

Let us now look at the time evolution of the order
parameter 7 (2). If our interpretation of the shock on
the lattice is correct, one must observe an initially slow
decrease of 7, followed by a sharper decay for t > tp cor-
responding to the energy transfer to small scales caused
by the shock. This is indeed what can be seen in Fig. 6,
where we have drawn 7(t) for one particular value of the
nonlinearity parameter R. Over longer times than those
described by our theory, 7 displays random fluctuations
superimposed on a much slower decay (corresponding to
the stochastization of the field shown in Fig. 5).

To relate in a quantitative way the evolution of  with
the shock wave model, we examine the expression (24) of
the breakdown time, when the initial condition is (23),
corresponding to (27). Using the parameter R one gets

__wiN®
" 64m3k3R

k<N N

B " 16mkR

(34)
One can verify that (34) gives the correct order of mag-
nitude for the onset of small scale oscillations in r, (see
Fig. 3). However, it is not clear how to define and then
find a probe for such an onset time. If we consider instead
the 7 evolution we can make more quantitative state-
ments. As shown above, the sharp decay of 7 is related
to the shock on the lattice, so the time scale character-
izing this decay of 1 must be related to the breakdown
time. In Fig. 7 the initial behavior of 5 is drawn for dif-
ferent values of R showing a more rapid decay as R is
increased. This is consistent with the dependence on R
of the breakdown time predicted by (34).

In all simulations we observed that n values are typ-

n(t)

0.2 -]
O.O'.l..‘1...,L.u.1...‘1...1
0 2000 4000 6000 8000 10000
t
FIG. 6. Time evolution of n for N = 256, k = 1,

R = 1.2 x 1072,
tp = 424.

The shock time, shown by an arrow, is
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FIG. 7. Time evolution of  for N = 256, k = 1, and the
following values of R: (a) 3.7 x 1073; (b) 5.6 x 1073; (c)
8.4 x 107%; (d) 1.2 x 1072; (e) 1.9 x 1072,

ically slightly larger than 0.9 at the breakdown time of
formula (34). This means that the shock on the lattice
just begins at ¢t ~ tg, thus tp is the time at which 7 be-
gins a sharp decay; at this time 7 has not yet decreased
significantly. Indeed, the waveform, though distorted, is
still close to the original one at t ~ tg. To relate the
shock model with the temporal behavior of n we proceed
in the following way. We fix a threshold value o for 7
and we measure the time ¢, required for 7 to reach this
threshold value (see also [19]). If o is not too small, e.g.,
o ~ 0.8-0.9, such a time is well defined, since 7 shows a
monotone behavior decreasing below o, in the range of R
values explored here. Our working hypothesis is that the
scaling properties of tg with respect to the parameters
R, N, and k, expressed by (34), characterize the initial
decay of 7, then

to (35)

kR’
Of course the proportionality constant depends on the
chosen threshold value o and is not the same as in (34).

In Fig. 8 we show the dependence of ¢, on the number
of oscillators N (64 < N < 1024), with a fixed value of
k and R. The proportionality with respect to N is well
verified. We have also controlled the validity of such a
property when the threshold value o is changed.

Finally, we study the “universal” behavior t, «x N/kR
as a function of the single parameter N/kR. In Fig. 9 we
have reported 131 experimental values of t, versus N/kR,
the latter parameter spanning over approximately three
decades. This was obtained varying both R (in the same
interval as above) and N (from N = 64 to N = 512) and
with k = 1, k = 2, and k£ = 3. The predicted law is well
verified and a fit of the kind

log gt = alogo(IN/kR) + b

gives a = 0.93.
An even more striking scaling law can be seen in
Fig. 10, where the dependence of 1 on the rescaled time
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FIG. 8. Threshold time t, vs N for k = 1, o = 0.9,
R = 3.74 x 1073, The experimental values (¢) are fitted with
the straight full line, whose slope, 1.07, is in agreement with
the theoretical prediction of 1.

tr = Rt/N is shown for fixed k = 1, proving the in-
dependence of our results from the threshold value t,.
The curves corresponding to different values of R and N
collapse one on the other for tg < 0.06.

V. CONCLUSIONS

Our theory predicts a scaling law for the time scale
characterizing the temporal evolution of the order pa-
rameter 7 in formula (2), which describes the evolution of
model (3) towards equipartition of energy among Fourier
modes. This prediction has been verified in numeri-
cal experiments realized in a given range of parameters
(R,N,k) and initial conditions (traveling waves). Such
laws have a more general character and are valid for
a larger class of initial conditions than those discussed

. g e
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FIG. 9. Dependence of t, on the single scaling parameter
N/(kR). The plot is compatible with a slope of ~ 1, more
evident for large V.
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FIG. 10. Dependence of 7 on the rescaled time tg = Rt/N.
The values of R range from 3.7 x 1072 to 2.8 x 1072,
N = 256,512; k = 1. Ten different curves collapse for
tr < 0.06.

here. In fact, some very recent theoretical and numerical
results [3,5,10] show a universal behavior of 1 of the kind
n = n(BkEunt/N®) for initial conditions of a different
kind (standing waves) with & < N. Careful numeri-
cal simulations made to clarify why in [5] and [10] two
different scaling laws were found, have shown that they
both are different ways to represent the universal law
1 = n(BkErint/N*) for o = 2 [20]. However, the value of
a, predicted to be 2 also from a theory based on a low-
dimensional effective Hamiltonian [10], has instead been
found to be closer to 2.5 in more recent numerical simula-
tions [3], which include in the analysis also states closer to
equipartition and use as a probe a parameter [exp(S)/N]
which allows a better characterization of these states.

Moreover, a relaxation time to equipartition increasing
with NV has been found numerically in Ref. [21] for E «« N
and larger, looking directly at the properties of the power
spectrum.

The 7 scaling law can be explained also by our theory
based on shock waves. Indeed, let us consider the tem-
poral evolution of n as governed by a universal law of
the kind n = n(¢/7), where 7 is an internal time scale of
the system arising from the global nonlinear interaction
among its constituents and depending on the relevant
parameters of the system. In the particular situation we
are studying, the role of 7 is clearly played by tg. If we
suppose a scaling law for 7 of the form (34) and use (32),
we find the same scaling law for n with @ = 2. The
discrepancy with the most recent findings that o = 2.5
is seemingly due to the fact that our theory describes
only the beginning of the relaxation process to equipar-
tition, before some sizeable energy is transferred to high
modes. In Ref. [3] the v/N correction has in fact been
heuristically attributed to a mode space-filling diffusive
phenomenon. A modification of our continuum theory
along these lines would require one to take into account
the growth of small wavelength instabilities whose enve-
lope obeys the nonlinear Schrodinger equation [22], and
also the coupling of these instabilities with Eq. (15).
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